ENTRANCE EXAMINATION FOR ADMISSION, MAY 2013.

M.Tech. (ENVIRONMENTAL ENGINEERING AND MANAGEMENT)

COURSE CODE: 393

Register Number :		
		Signature of the Invigilator (with date)
· · · · · · · · · · · · · · · · · · ·		

Instructions to Candidates :

Time: 2 Hours

1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.

Max: 400 Marks

- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each of the question carefully and shade the relevant answer (A) or (B) or (C) or (D) or (E) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you -1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.		represents kine lamental units th					ese are	chosen as the
	(A)	KV-2T-2	(B)	KV-1T-2	(C)	K ² V- ¹ T- ³	(D)	KV-2T-1
2.	The	dimensional forn	ıula f	or intensity of r	nagne	tic field is		
	(A)	ML-1	(B)	MT -2L-1A-1	(C)	AL^{-1}	(D)	M°L°T°
3.		initial velocity o		_			tion is	2 m/sec ² . The
	(A)	1 m	(B)	19 m	(C)	50 m	(D)	75 m
4.	Two	stones of differen	nt ma	sses are droppe	d sim	ultaneously from	the to	p of a building
	(A)	smaller stone h	it the	ground earlier				
	(B)	larger stone hit	the g	round earlier		•		
÷	(C)	both the stones	reach	the ground sin	nultan	eously		
	(D)	which of the stostone.	ones 1	reach the groun	nd ear	lier depend on t	he com	position of the
						*		
5.	dow	alloon is moving unto the ground nent when the sto	in 1	1 sec. The heig		· ·		
5.	dow	n to the ground	in 1	1 sec. The heig		· ·		
5.6.	down mon (A) A bu	n to the ground nent when the sto	in 1 one wa (B)	1 sec. The height as dropped is: 490 m t rifle and the	ght of (C) other	the balloon fro 485.1 m with a heavy rif	m the (D)	ground at the 494.9 m
	down mon (A) A bu White	n to the ground nent when the sto 592.9 m	in 1 one wa (B)	1 sec. The height as dropped is: 490 m t rifle and the	ght of (C) other should	the balloon fro 485.1 m with a heavy rif	m the (D)	ground at the 494.9 m
	down mon (A) A bu White	n to the ground nent when the sto 592.9 m allet is fired by a ch rifle will cause light rifle	in 1: one wa (B) a lighter mere	1 sec. The height as dropped is: 490 m t rifle and the e injury to the s	ght of (C) other should	the balloon fro 485.1 m with a heavy riter?	m the (D)	ground at the 494.9 m
	down mon (A) A bu Whi (A) (C)	n to the ground nent when the sto 592.9 m allet is fired by a ch rifle will cause light rifle	in 1 one wa (B) a light e mere	1 sec. The height as dropped is: 490 m t rifle and the e injury to the sinjury	(C) other should (B) (D)	the balloon fro 485.1 m with a heavy rifer? heavy rifle none of these satellite of mass	(D) fle by to	ground at the 494.9 m the same force.
6.	down mon (A) A bu Whi (A) (C) If r plan	n to the ground nent when the sto 592.9 m allet is fired by a ch rifle will cause light rifle both will cause represents the rate of mass M, the	in 1 one wa (B) a light e mere	1 sec. The height as dropped is: 490 m t rifle and the e injury to the sinjury of the orbit ocity v of the sat	(C) other should (B) (D) f the sellite in	the balloon fro 485.1 m with a heavy rifer? heavy rifle none of these satellite of mass	(D) fle by the second of the	ground at the 494.9 m the same force.
6.	down mon (A) A bu Whi (A) (C) If r plan (A) If R	n to the ground nent when the sto 592.9 m allet is fired by a ch rifle will cause light rifle both will cause represents the rate of mass M, the	in 1	as dropped is: 490 m t rifle and the e injury to the sinjury of the orbit ocity v of the sat v = G M/r	ght of (C) other should (B) (D) f the sellite in (C)	the balloon from the second 485.1 m with a heavy rifle heavy rifle none of these satellite of mass is given by the result of $v^2 = G M m/r$	(D) The by the selection (D)	ground at the 494.9 m the same force. eving around a $v^2 = G \text{ m/r}$

9.						with one-third of uid is (in kg/m³)	its vo	lume bel	ow the
	(A)	550	(B)	650	(C)	750	(D)	850	
10.	We fi	nd that water s	ticks to	a glass rod, i	t is bed	cause:			
	(A)	The force of coh	esion is	s > force of ad	hesion	· · . L			
i	(B)	The force of adl	nesion i	s > force of co	hesion				
	(C)	Force of adhesic	on = for	ce of cohesion	1				
	(D)	None of these							
11.		_				d with a termina me liquid with a			
	(A)	\mathbf{v}_0	(B)	4 vo	(C)	8 vo	(D)	64 vo	•
12.		· ·		=		form PV = C wh le of C depends u		ie tempe	rature
	(A)	The nature of th	ie gas i	used in the ex	perime	ent			•
	(B)	The magnitude	of g in	the laborator	y		٠	•	
	(C)	The atmospheri	c press	ure					
	(D)	The quantity of	the gas	s enclosed	·				
13.	If the	volume of a gas	s is to b	e increased b	y 4 tim	ies	·.		
	(A)	Temperature m	ust be	doubled					
	(B)	At constant 'P'	temper	ature must be	increa	ased by four time	S		
	(C)	At constant 'T'	the pre	ssure must be	increa	ased four times		٠.	
	(D)	It cannot be inc	reased				•		
14.	(1)	The boiling poir	nt of a l	iquid is affect	ed by	addition of solubl	e solid	l	
	(2)	The boiling poir	nt of a l	iquid is affect	ted by	external vapour p	ressu	re	
. :	(3)	The boiling poi	nt is a	fixed charact	eristic	of a liquid and do	es not	vary	
	(A)	Only (3) is corre	ect		(B)	Only (1) is corre	ct	•	
	(C)	(1) and (2) corre	ect		(D)	Only (2) is corre	ect		
1000		•*	,				-		

15.		ch one of th		g informat	ion is requ	ired for th	e complete	knowledge of a
	(A)	Size of the	unit alone	and the second	•		•	
	(B)	The numer	ical value		•			•
	(C)	Both the si	ze as well	as numeri	cal value			
i	(D)	None of the	quantitie	s (A) and ((B) are requ	ured		
					• . •		•	
16.		aeroplane m) m verticall						west and then ion is
	(A)	1400 m	(B)	1500 m	(C)	1300 m	(D)	1600 m
				5				
17.	The	thermometr	ic liquid u	sed to mea	sure upto –	-100°C is		
	(A)	Alcohol	(B)	Mercury	(C)	Water	(D)	All the above
•	•			•		·		•
18.	5 gn	of ice at 0°0	C is droppe	ed in a bea	ker contain	ing 20 gm	of water at	40°C, then
	(A)	All the ice	will not m	elt in the v	vater			
	(B)	All the ice	will melt a	nd the res	ulting temp	perature of	water will l	oe 0°C
	(C)	All the ice	will melt a	nd the res	ulting temp	perature of	the water w	vill be 25°C
	(D)	All the ice	will melt a	nd the res	ulting temp	erature of	the water w	rill be 16°C
19.	of the coal	he same ma	ss moving	g north-wa	ard with th	ne same s	peed V. Th	nother particle e two particles north-easterly
	(A)	V/2	(B)	2 V	(C)	V/√2	(D)	None of these
20.	A lif	t moving up	comes to 1	est with a	retardatio	n. The weig	ght of the m	an in it
	(A)	increases	•		(B)	decreases	, · ·	
	(C)	remains co	nstant		(D)	either inc	reases or de	creases .
•			•		•			
21.	force		-		-	• •		of a tree. If the eration? (Take
	(A)	22.5 m/s ²²	(B)	8 m/s^2	(C)	5 m/s^2	(D)	2 m/s^2
								•

22.		sider a satellite ements is wrong		round the ear	th in a	circular (orbit. V	Vhich o	f the followi	ng
	(A)	It is a freely fal	ling b	ody						
•	(B)	It is acted upo counter-balance				y from th	e centi	re of th	e earth wh	ich
•	(C)	It is moving wi	th a co	onstant speed						
	(D)	Its angular mor	mentu	m remains con	stant	·			٠.	
23.		weight of a body h it will be (assu					half wa	ay to th	e centre of t	he
	(A)	W	(B)	W/2	(C)	W/4		(D)	W/8	
24.	10 g	ube of size 10 cm m is placed on th sity of water = 10	ie cub	e. The depth of						
	(A)	0.1 mm	(B)	1 mm	(C)	1 cm	•	(D)	0.1 m	
25.	Mor	e liquid rises in a	thin	tube because o	of:	·				
	(A)	Larger value of	radiu	s	(B)	Larger v	alue of	f surfac	e tension	
	(C)	Small value of	surfac	e tension	(D)	Small va	alue of	radius		
26.	Max	cimum possibility	of tu	rbulent flow is	in a flu	uid of				•
- "	(A)	Low density an	d low	viscosity	(B)	High de	nsity a	nd high	viscosity	
	(C)	Low density an	d high	viscosity	(D)	High de	nsity a	nd low	viscosity	
27.	The	unit of universa	l`gas c	onstant is						
	(A)	watts/K	(B)	dynes/°C	(C)	ergs/K		(D)	newtons/°R	•
28.		ording to the kir ecules are	netic t	heory of gases	, the i	ntermolec	ular fo	rces be	tween the g	as
	(A)	Zero	(B)	Very small	(C)	Large		(D)	Very large	
29.	The	gas thermomete	rs are	more sensitive	than l	liquid the	\mathbf{rmome}	ters be	cause	
	(A)	Gases expand r	nore t	han liquids	•	•				
	(B)	Gases are easil	y obta	ined			4			•
	(C)	Gases are mucl	n light	er						÷
	(D)	Gases do not ea	asily c	hange their sta	ates					

	(A)	4.2 joules		(D)	42 Joures	s (C)	oo joules	(D)	556 Joules
31.	woo		s such	that	the wom	an is entire	lock placed over ly above water		•
	(A)	0.5×10^{-1}	m^3			(B)	$0.585 \times 10^{-1} \text{ m}$	3	
	(C)	$0.33~\mathrm{m}^3$				(D)	$0.54 \times 10^{-1} \text{ m}^3$	ŀ	
32.	A lic	quid rises in	а сар	illary	tube whe	en the angle	of/contact is		
	(A)	An acute a	angle			(B)	An obtuse ang	le	
	(C)	π radian	·			(D)	$\pi/2$ radian		
33.		ficient of vi				·-	5 gm/cm³ is d gm/cm³. The t		=
	(A)	2 cm/s		(B)	4 cm/s	(C)	6 cm/s	(D)	8 cm/s
34.	hoop					and the second s	o as to lie along s which is sub		and the second s
	(A)	50		(B)	25	(C)	20	(D)	None of these
35.	Whi	ch of the fol	llowing	gs is c	correct?				
	(A)	sin 1° > si	n 1			· (B)	$\sin 1^{\circ} < \sin 1$		
	(C)	$\sin 1^{\circ} = \sin 1$	n 1			(D)	$\sin 1^\circ = (\pi/180$) sin 1	*
36.	In a	Δ ABC, if a	b = 3, b	= 4,	c=5, the	n the value	of $\sin 2B$ is		
	(A)	24/25		(B)	25/24	(C)	1/25	(D)	None of these
37.	P is		n the	level			ground, C is to BC subtends		
-	(A)	$\frac{n}{2n^2+1}$	e.	(B)	$\frac{n}{n^2-1}$	(C)	$\frac{n}{n^2+1}$	(D)	None of these

The amount of mechanical work to be done to completely melt 1 gm of ice is

30.

	mov	ring 200 metres to	ward	s the tower it be	come	es 45°. The heig	ht of tow	er is
	(A)	10 mt.	(B)	$100 (\sqrt{3}+1) \text{ mt.}$	(C)	$10/\sqrt{3}$ mt.	(D)	None of these
39.	The	argument of (1 –	i √3) /	$(1 + i \sqrt{3})$ is				
	(A)	60°	(B)	120°	(C)	210°	(D)	240°
40.	1 + 3	$i^2 + i^4 + i^6 +i^{2r}$	is					
	(A)	Positive			(B)	Negative		
	(C)	0	-		(D)	Cannot be det	ermined	
41.		points of the side length of the side			BC as	re (3, 5) and (–3	s, -3) res	pectively, then
	(A)	10	(B)	20	(C)	15	(D)	30
42.	A lir	ne passes through	(2, 2)	and is perpend	licula	\mathbf{r} to the line $3x$	+ y = 3.	Its y intercept
	(A')	1/3	(B)	2/3	(C)	1~	(D)	4/3
43.	Cent	tre of a circle is (2	2, 3). I	f the line $x + y$	= 1 t	ouches it, its ec	uation i	S
	(A)	x^2+y^2-4x-6	3y + 4	= 0				
	(B)	x^2+y^2-4x-6	5y + 5	= 0	,			
	(C)	x^2+y^2-4x-6	3y – 5	= 0				
	(D)	None of these		•				
44.	Fou	r distinct points (2k. $3k$), (1, 0), (0, 1) aı	nd (0.	0) lie on a circl	e for	
	(A)	all integral valu			(B)	0 < <i>k</i> < 1	,	•
	(C)	<i>k</i> < 0			(D)	k = 5/13	•	
45 .	If f	(x) is a polynor	nial s	satisfying $f(x)$,	$f\left(\frac{1}{2}\right)$	$= f(x) + f\left(\frac{1}{x}\right)$	and f	(3) = 28, then
	f(4)		4		(x	f(x)	•	· · .

The angle of elevation of the top of a tower at any point on the ground is 30° and

38.

(A)

63

(D) None of these

(C)

17

(B)

65

46	f(x)	$= x \sin\left(\frac{1}{x}\right)$, <i>x</i> ≠	0 , $ h\epsilon$	$ \operatorname{en} \lim_{x \to 0} f(x) = $:				
1-1-1 1	(A)	1		(B)	0	(C)	-1		(D)	Not exist
47 .	If f	(x)=(x-x)	$_{0})g(x)$	whe	re $g(x)$ is co	ntinuous	at x_0 , then	$f'(x_0)$	is eq	ual to
•	(A)	0		(B)	x_0	(C)	$g(x_0)$		(D)	None of these
48.	The	diff. coeffi.	of f(lo	g x) v	v.r.t.x, whe	re $f(x) =$	$\log x$ is		٠	
	(A)	$x / \log x$		(B)	$\log x / x$	(C)	$(x\log x)^{-1}$		(D)	None of these
49.	If <i>f</i> ($x) = \frac{\cos^2}{1 + \sin^2}$	$\frac{x}{2}$, t	hen f	$(\pi / 4) - 3f'(\tau)$	7/4) is			-	. N
	(A)	-1		(B)	1	(C)	2		(D)	3
50.	If y =	$= \sin(m \sin^{-1}$	¹ x), t	hen			,		:	·
	(A)	$(1-x^2)y_2$	- xy ₁ -	⊦ m²y	= 0	(B)	$(1-x^2)y_2$	+ xy ₁ -	m^2y	= 0
	(C)	$(1-x^2)y_2$	$-xy_1$	- m ² y	= 0	(D)	None of th	iese		
51.	If f($x,y,z)=(x^2$	$y^2 + y^2$	$+z^{2})$	f_{xx} , then f_{xx}	$+ f_{yy} = f$	zz=			
	(A)	0		(B)	1	(C)	-1 .	,	(D)	None of these
52.					ea that can a sector in so			wire of	leng	gth 20 cm. By
	(Å)	10		(B)	25	(C)	30		(D)	None of these
53.	If $f($	$x)=x^3+ax$	$x^2 + b$	x + c	has a minim	na at $x =$	3 and max	kima at	x = -	-1, then
									.0	
	(C)	a = -3, b	= -9,	<i>c</i> ∈ <i>I</i>	?	(D)	None of th	iese		
54 .		`	•		a uniform splength of hi	•	•		n a la	amp post 6 mt.
	(A)	2/5 m/s	÷	(B)	5/2 km/hr	(C)	10 mt/mi		(D)	None of these

- $55. \quad \int x^3 (\log x)^2 \ dx$
 - (A) $\frac{1}{32}x^4[8(\log x)^2 + 4\log x 1]$
- (B) $\frac{1}{32}x^4[8\log x)^2 + 4\log x + 1]$
- (C) $\frac{1}{32} x^4 [8 \log x)^2 4 \log x 1]$
- (D) None of these
- 56. The area of the region bounded by the curve $y = 2x x^2$ and the line y = x is
 - (A) 1/2
- (B) 1/3
- (C) 1/4
- (D) 1/6
- 57. The area bounded by the normal at (1, 2) to the parabola $y^2 = 4x$, x-axis and the curve is given by
 - (A) 10/3
- (B) 7/3
- (C) 4/3
- (D) None of these
- 58. Equation of the curve passing through (3, 9) which satisfies the diff. Equation $\frac{dy}{dx} = x + \left(\frac{1}{x^2}\right)$ is
 - (A) $6xy = 3x^2 6x + 29$

(B) $6xy = 3x^3 - 29x + 6$

(C) $6xy = 3x^3 + 29x - 6$

- (D) None of these
- 59. If $a \times b = c$ and $b \times c = a$, then
 - (A) a, b, c are orthogonal in pairs and |a|=|c| and |b|=1
 - (B) a, b, c are not orthogonal to each other
 - (C) a, b, c are orthogonal in pairs but $|a| \neq |c|$
 - (D) a, b, c are orthogonal but $|b| \neq 1$
- 60. If α is a vector and x is a non-zero scalar, then
 - (A) $x \alpha$ is a vector in the direction of α
 - (B) $x \alpha$ is a vector collinear to α
 - (C) $x \alpha$ and α have independent direction
 - (D) None of these
- 61. Solution of the in equation $x^2 + 2 |x| 15 \ge 0$ is given by
 - (A) $x \le -\sqrt{3}$ or $x \ge \sqrt{3}$

(B) $x \le -3$ or $x \ge 3$

(C) $-3 \le x \le 3$

(D) None of these

62.		ee identical d 1 of them is	ice are ro	lled. The	e proba	bility	that the sam	e number	will appear or
	(A)	1/6	(B)	1/18		(C)	1/36	(D)	None of these
63.	If x	$= a \cos^3 \theta, y =$	$b \sin^3 \theta$,	then .					
	(A)	$(x/a)^{2/3} + (y/l)$	$(5)^{2/3} = 1$	•		(B)	$(x/b)^{2/3} + (y/c)^{2/3}$	$a)^{2/3}=1$	
	(C)	$(a/x)^{2/3} + (b/x)^{2/3}$	$(y)^{2/3} = 1$. •	(D)	$(b/x)^{2/3} + (a/y)^{2/3}$	$(y)^{2/3} = 1$	
64.	If th		triangle	are in th	e ratio	1:2	: 3, the corres	sponding s	sides are in the
•	(A)	2:3:1	(B)	√3 : 2 :	1	(C)	2 : √3 :1	(D)	1:√3:2
65.			_				$ \neq z_2 \text{ and } z_1 $ $ \operatorname{len}(z_1 + z_2)/(z_1) $		z ₁ has positive be
	(A)	zero		•		(B)	real and pos	sitive	
	(C)	real and neg	gative			(D)	purely imag	inary	
	(E)	none of thes	se			•		· :	÷
66.	The	line which is	parallel t	0 <i>x</i> – axi	s and c	rosses	s the curve y	$= \sqrt{x}$ at an	angle of 45° is
	(A)	x = 1/4	(B)	y = 1/4		(C)	y = 1/2	(D)	y = 1
67.	The	line $y = mx +$	c interse	cts the ci	x^2	+ y ² =	r^2 at the two	real disti	nct points if
	(A)	$-r\sqrt{(1+m^2)}$	$< c < r \sqrt{(}$	$1+m^2)$		(B)	$-c\sqrt{(1-m^2)}$	< r < c √(1	$(-m^2)$
•	(C)	$-r\sqrt{(1-m^2)}$	$< c < r \sqrt{(}$	$1 + m^2$		(D)	None of the	se	:
68.	If m	ore solvent is	added to	solution	, the m	agnit	ude of heat of	reaction?	
	(A)	Decreases				(B)	Increases	-	-
	(C)	Remains con	nstant			(D)	None	•	
69.		mL of 0.2 MI tion will be?	KOH and	100 mL	of 0.1	$ m MH_2S$	O ₄ solutions	are mixed	i. The resulting
	(A)	Acidic	(B)	Basic		(C)	Amphoteric	. (D)	Neutral

70.	Which of the following gases has a boiling point nearly equal to the boiling point of rare gas argon?
	$(A) H_2 \qquad \qquad (B) F_2$
	(C) Cl_2 (D) NO
	(E) Cl
71.	The extent of adsorption of a gas on a solid depends on
	(A) Nature of gas (B) Pressure of gas
	(C) Temperature of the system (D) All are correct
72.	For the endothermic reaction $N_2(g) + O_2(g) \ge 2NO(g)$ which of the following is true?
	(A) K is independent of temperature
	(B) K increases as temperature increases
	(C) K decreases as temperature decreases
	(D) K varies with the addition of NO
73.	Once the equilibrium is reached, under given condition
	(A) Concentration of products changes
	(B) Concentration of reactants changes
	(C) Concentrations remain the same inspite of change in temperature
	(D) Concentration of all substance present do not change
74.	In the reaction $A \to B$, if the concentration of A is increased four times the rate of reaction is doubled. The order of the reaction is?
-	(A) 1 (B) 0 (C) 1/2 (D) 2
75 .	In a reversible reaction, a catalyst?
	(A) Increases the rate of forward reaction
•	(B) Increases the rate of backward reaction
• • •	(C) Increases the rate of forward and backward reaction equally
	(D) None of these
76.	Which of the following is intensive property?
	(A) Temperature (B) Molarity
	(C) Density (D) All are correct

<i>7</i> 7.	The solvent which is neither proton dono	r nor p	roton acceptor is	called?	
	(A) Amphoteric (B) Neutral	(C)	Aprotic	(D) F	rotonic
78.	How many grams of KMnO ₄ (M.W. = 158 0.01 N solution, KMnO ₄ which is to be us		•		
	(A) 1.58 g (B) 0.316 g	(C)	3.16 g	(D) 1	.58/2 g
79.	The relationship between osmotic pressur (P2) and 10 g. sucrose (P3) are dissolved in			glucose (J	P ₁) 10 g. urea
	(A) $P_1 > P_2 > P_3$ (B) $P_1 \setminus_3 > P_2 > P_1$	(C)	$P_2 > P_1 > P_3$	(D) P	$P_2 > P_3 > P_1$
80.	45 gm of acid of mol. Wt. 90 neutralis basicity of the acid is	ed by	20 mL of 0.5 N	l caustic	potash. The
	(A) 1 (B) 2	(C)	3	(D) 4	
81.	Two solution have difference osmotic pressure is called?	pressu	res. The solution	on of hig	ther osmotic
	(A) Isotonic solution	(B)	Hypertonic solu	ution	•
	(C) Hypotonic solution	(D)	None		
82.	When mercuric iodide is added to the aqu	eous s	olution of Kl, the	• · ·	
	(A) Freezing point is raised	(B)	Freezing point	does not	change
	(C) Freezing point is decreased	(D)	Boiling point de	oes not ch	ange
83.	Smoke is an example of?	* 7			
	(A) Gas dispersed in liquid	(B)	Gas dispersed i	in solid	
	(C) Solid dispersed in gas	(D)	Solid dispersed	in solid	
84.	Detergent action of soaps and synthetic d	leterge	nts is due to the	ir?	
	(A) Interfacial area	(B)	High molecular	weight	
	(C) Ionization	(D)	Emulsifying pr	operties	
85.	The oxidation of SO ₂ by O ₂ to form SO ₃ i will be maximum	is an e	xothermic reacti	on. Produ	action of SO ₃
٠	(A) If temperature is raised	(B)	If temperature	is decrea	sed
	(C) If concentration of SO ₂ is decreased	(D)	None		

86.	The	e specific rate constant of a first order read	tio	on depends on?
	(A)	Concentration of the reactant (I	3)	Concentration of the product
	(C)	Time (I))	Temperature
87.	Whi	ich of the following statements is true?		
	(A)	Endothermic reactions have higher reactions	ac	ctivation energies than exothermic
	(B)	The rate of catalysed reaction is indepen	ıde	ent of concentration of catalyst
	(C)	The specific rate constant for a reaction the reacting species	n i	s independent of the concentration of
•	(D)	There is a single rate determining step	in a	any reaction mechanism
88.		the reaction $A + 2B \rightarrow Products$, doublicentration of A constant) increases, the ra	_	
٠.	(A)	2 times (B) 4 times (C	")	3 times (D) 6 times
89	An a	auto catalyst is?		
	(A)	Catalyst for catalyst		
d.	(B)	One which starts a reaction		
	(C)	One of the products of the reaction which	h a	acts as a catalyst
	(D)	None	٠	
90.	Whi	ich of the following statements/ relationsh	ips	s is not correct?
	(A)	In an exothermic reaction, the enthalpy	of	products is less than that of reactants
•	(B)	$\triangle H$ fusion = $\triangle H$ sublimation $- \triangle H$ vap	ou	risation
	(C)	A reaction for which $\triangle H^{\circ} < 0$ and $\triangle S^{\circ} > 0$	0 i	is possible at all temperatures
er et som	(D)	$\triangle H$ is less than $\triangle E$ for the reaction C(s) +	$\frac{1}{2}O_2(g) \rightarrow C_{02}(g)$
91.	Dec	crease of free energy of a reacting system i	nd	icates of a/an?
	(A)	Exothermic reaction (E	3)	Equilibrium reaction
	(C)	Spontaneous reaction (I))	Slow reaction
92.	In e	electrolysis mass of discharged ion is not p	rop	portional to?
	(A)	Time (F	3)	Quantity of electricity
	(C)	Resistance (I))	Chemical equivalent of ions

93.	Which is not the Lewis acid?								
	(A)	$\mathrm{H}_2\mathrm{O}$	(B)	Ag+	(C)	BF_3	(D)	\mathbf{ZnCl}_2	
94.	The pH of 10-8 M HCl is								
	(A)	6.96	(B)	8.2	(C)	6.0	(D)	8.9	
95.	When K ₂ O is added to water, the solution is basic because it contains a significant concentration of?								
	(A)	K ⁺	•	•	(B)	K_2O			
	(C)	O ² -			(D)	O_2^{2-}	•		
	(E)	OH-	,			e ,			6.
96.	Which of the following absorbs heat when dissolved in water?								
	(A)	(A) Sodium thiosulphate				Sodium ch	ıloride		
	(C)	Sodium carb	onate		(D)	Sodium hy	ydroxide		
97.	In what manner will increase of pressure affect the equation								
	$C(s) + H_2O(g) \leftrightarrows CO(g) + H_2(g).$								
	(A)	A) Shift in the forward direction				Shift in th	e reverse d	irection	
. •	(C)	Increase in t	he yield o	of H ₂	(D)	No effect		* - £	
98.	The half life of a first order reaction is?								•
÷	(A) Independent of initial concentration				ion .				. :
	(B)	B) Directly proportional to initial					•	•	
	(C)	Inversely proportional to initial concentration							
	(D)	None							
99.	How many grams of CH ₃ OH would have to be added to water to prepare 150 mL of solution that is 2.0 M CH ₃ OH?								
•	(A)	9.6	(B)	2.4	(C)	9.6×10^3	(D)	4.3 × 10	12
100.	Whi	ch of the follo	wing colle	oidal system	contains	solid as the	e dispersed	phase?	
	(A)	Smoke	(B)	Clouds		*Lather		Boot po	lish